Estimating Attenuation of Nutrients from Septic Systems & Nutrient Trading (DEQ-13)

> Presented to WPCAC May 13, 2022

Eric Regensburger, MDÉQ eregensburger@mt.gov 406-444-6714 METHOD FOR ESTIMATING ATTENUATION OF NUTRIENTS FROM SEPTIC SYSTEMS (MEANSS)

Description
Data Needs
Scoring Tables
Validation
DEQ-13 Trading Circular
DEQ-13 Trade Example

MEANSS DESCRIPTION

- Estimate nitrogen and phosphorus (nutrients) reductions as septic system wastewater migrates to surface water.
- Used to estimate septic loading for TMDLs & Nutrient Trading (DEQ-13). Large dataset over watershed scale.
- Needed a simple method that uses site-specific information known to control nitrogen (N) and phosphorus (P) attenuation.
- Lack of other simple available tools for estimating septic contributions to surface water.

MEANSS PARAMETERS (3)

- Denitrification (natural nitrogen reduction) and phosphorus adsorption occurs more in soils with high organic content (clay soils). Hydrologic Soil Group (HSG) used to estimate those soils.
- Low CaCO3 content correlated to higher P adsorption (except at less common high soil pH (>~8), where P adsorption increases again at higher CaCO3 concentrations).
- Wastewater travel time is correlated to nutrient reduction. Distance to surface water used as proxy to travel time which is more difficult to measure.

DATA SOURCES

- Drainfield location from GIS: Montana
 Structures Framework (drainfield location ~ house) OR actual location when available
- HSG and soil CaCO3 from NRCS Soil Survey Geographic Database (SSURGO)
 - ► 4 HSGs A,B,C,D: low to high clay content [<10%(A), 10-20%(B), 20-40%(C), >40%(D)].

Distance to receiving/perennial SW is from GIS and USGS surface water dataset (NHD).

NITROGEN TABLE

Percent Nitrogen Load	HSG Soil Type @ Drainfield	HSG Soil Type within 100' of surface water	Distance to surface water (ft)
Reduction			
0	Α	Α	0 - 100
10	B		101 - 500
20	С	B	501 – 5,000
30	D	С	5,001 - 20,000
50		D	>20,000

PHOSPHORUS TABLE (* = Can be modified for soil pH >~8)

Percent Phosphorus Load Reduction	Soil HSG @ drainfield (CaCO3 <= 1%)	Soil HSG @ drainfield (CaCO3 >1% and < 15%)*	Soil HSG @ drainfield (CaCO3 >= 15%)*	Distance to Surface Water (ft)
10	Α	Α	Α	0-100
20			В	
40		В	С	
50				101-500
60	В	С	D	
80	С	D		501-5,000
100	D			>5,000

VALIDATION

 Comparison to 5 groundwater studies showed comparable results (68%-120% of study load)
 Currently working on using MT Ground Water Permit data to improve MEANSS validation

EXAMPLES OF MEANSS RESULTS

SITE	Number of Septics	% N reduction	% P reduction
Ashlev Creek	3.342	58	94
Kalisnell (draft)	1 662	<u> </u>	94.6
Missoula DFO-13	3 041	71 <i>A</i>	
Holono DEO 12	0,000	52	
DEC 12	9,090		00
Billings DEQ-13	2,372	61.5	

DEQ-13 NUTRIENT TRADING SUMMARY

Designed primarily for Point Source (e.g. MPDES permitted source) to Non-Point Source (e.g. septics, agricultural, livestock), but can also be used in Point Source – Point Source.

Trade details are included and enforced through the MPDES permit

To date, only septic trades implemented in MT

DEQ-13 TRADE RATIO

Trades are based on a trading ratio.

- For every pound of nutrient reduction by the nonpoint source the Permittee receives "X" pounds of credit. The trade ratio is 1/X (X is <=1)</p>
- Trade ratio begins at 1 and then can be increased for:
 - Delivery Ratio (where applicable)
 - Uncertainty Ratio (where applicable)

Agriculture/Livestock BMPs often have pre-set pound credits. Can also use models to estimate the BMP nutrient reduction.

Septic trade ratios can also account for municipal wastewater discharge concentration

SEPTIC TRADE RATIO EXAMPLE

- Raw Wastewater is ~ 50 mg/L total nitrogen (TN) discharged from drainfields.
- MEANSS shows 50% N reduction as TN migrates into surface water. Delivery Ratio = 2 (TN reaching surface water equivalent to 25 mg/L)
- Uncertainty Ratio none
- WWTF average TN discharge is 10 mg/L.
- By connecting septic to WWTF 15 mg/L TN (25-10) is removed from surface water.
- Trade ratio is therefore (50/15) or 3.3. For every 3.3 lbs TN discharged from drainfields the WWTP receives a 1 lb credit towards their permit limit.

MPDES PERMIT TRADE RATIOS

PERMIT	% N reduction	WWTF Avg. N conc. (mg/L)	Trade Ratio – Avg (Range)
Missoula	71.4	8.7	13.9 (2 - 31)
Helena	52	10.5	3.88 (3 – 5.2)
Billings	61.5		2.6

QUESTIONS

RANCEP